Dinoflagellates from Hainan Island: Potential threat for transporting harmful algae from Hainan to Japan

1. Introduction

Coastal areas in Hainan Island, China, are important for commercial fisheries, but few studies on harmful algal bloom (HAB) have been performed to date. In south part of Japan, large quantities of the seedlings for greater amberjack farming are imported from Hainan Island every year since 1988. In this study, the dinoflagellate species were identified and described from the plankton samples around Hainan Island to make a list of the species occurred including HAB species for providing against potential threat of HAB events. Additionally, phytoplankton communities between Hainan Island and the two bays in south part of Japan were determined from the plankton and the sediment samples using both microscopic and molecular analyses, to evaluate a possibility for artificial transportation of tropical HAB species to Japan.

2. Occurrence of dinoflagellates in the coastal areas around Hainan Island

A total of 37 dinoflagellate species in 11 genera from nine families were identified from 11 coastal stations around Hainan Island (Table 1). Eight toxic and four red tide-forming species (Fig. 1) were found at most stations, except for Station (St.) 4. These species included the five genera of Ceratium, Dinophysis, Lingulodinium, Prorocentrum, and Protoperidium. Ceratium furca, a red tide-forming species, and Prorocentrum rhathymum, a ciguatera fish poisoning species, were occurred in large numbers at St. 7 and 8, respectively, both of which are near fish farms or fishing villages. Prorocentrum lima and Dinophysis acuminata are diarrhetic shellfish poisoning species and Lingulodinium polyedrum is a vessotoxin species, which appeared only at St. 5, near the location of a fish farm and seafood markets. These results suggest potential threats of harmful algal blooms around Hainan Island that could cause fish, shellfish, and human poisoning.

Yin Angi Course in Ecosystem Conservation

3. Occurrence of dinoflagellates in the Kagoshima Bay and Uranouchi Bay, south Japan

A total of 27 dinoflagellate species in eight genera from seven families were identified from the plankton samples in Kagoshima Bay and Uranouchi Bay, south Japan (Table 2). Species from the Kareniaceae were found only in south Japan, while species from the Gonyaulacaceae, Peridiniaceae, and Heterocapsaceae in Hainan Island. Similarity analysis in six families that appeared in both south Japan and Hainan Island between the two areas showed high similarity level (over 50%) except Prorocentraceae and Dinophysiaceae (Fig. 2a), and the similarity of the harmful species between the two areas was higher, 60%, than those of the total, 40.63% (Fig. 2b).

4. Phytoplankton community from the bottom sediments in Hainan Island and Kagoshima Bay based on metagenomic analysis

Phytoplankton from the sediment samples in Hainan Island consists of 81 species from seven phyla (Fig. 3a). Whereas in Kagoshima Bay, it consists of 61 species from six phyla (Fig. 3b). Species from the Bacillariophyta were found most frequently in both Hainan Island and Kagoshima Bay. Species from the Cryptophyta and Phaeophyta were found only in Hainan Island, while species from the Haptophyta in Kagoshima Bay. Similarity indices in 17 orders that appeared in both areas between Hainan Island and Kagoshima Bay calculated using the non-quantitative analysis showed a high similarity level (>50%) except for Naviculales (Fig. 4a), which appeared 24 species of Pinnularia in Hainan Island while only three in Kagoshima Bay. Similarity index for the harmful species between the two areas was 40 %, being lower than those of total, 49% (Fig. 4b).

No.	Species name	Station no.										
		1	2	3	4	5	6	7	8	9	10	11
	Family Prorocentraceae											
1	Prorocentrum emarginatum					+						
2	P. hoffmannianum ^T								+			
3	$P. lima^{\mathrm{T}}$					+						
4	P. micans ^R	+				+	+		+	+	+	+
5	$P. rhathymum^{T}$	+	+	+		+	+		+		+	+
6	P. shikokuense	+		+								
7	P. sigmoides ^R					+			+			
	Family Dinophysiaceae											
8	Dinophysis acuminata ^T					+						
9	D. caudata ^T									+		
10	D. rudgei						+					
	Family Gonyaulacaceae											
11	Gonyaulax polygramma						+					
12	Lingulodinium polyedrum $^{\mathrm{T}}$					+						
	Family Pyrophacaceae											
13	Pyrophacus horologium									+		
	Family Ceratiaceae											
14	Ceratium furca ^R	+					+	+		+	+	
15	C. fusus ^R	+					+	+	+			
16	C. kofoidii							+		+		
17	C. tripos							+		+		
	Family Peridiniaceae											
18	Durinskia capensis					+			+			
19	Peridinium quinquecorne	+				+	+	+	+	+	+	
	Family Protoperidiniaceae											
20	Protoperidinium avellanum					+						
21	P. bipes						+			+		
22	P. claudicans					+	+					
23	P. divaricatum					+						
24	P. excentricum	+				+	+			+		
25	P. latispinum						+		+	+		
26	P. marukawai									+		
27	P. minutum								+			
28	P. obtusum								+			
29	P. oceanicum ^T	+				+						
30	P. pellucidum $^{\mathrm{T}}$			+		+			+	+	+	
31	P. punctulatum					+	+			+		
32	P. pyriforme									+		
	Family Calciodinellaceae											
33	Scrippsiella trochoidea										+	
	Family Heterocapsaceae											
34	Heterocapsa sp. 1						+					
35	Heterocapsa sp. 2						+					
36	Heterocapsa sp. 3						+					
37	Heterocapsa sp. 4						+					
+ Occurrence												

Table 1 List of dinoflagellate species observed in the coastal areas around Hainan Island

^T Toxic species

^R Red tide-forming species

N.	с	Station no.						
NO.	Species name	А	В	С	D	Е		
	Family Prorocentraceae							
1	Prorocentrum compressum	+	+	+				
2	P. gracile		+	+				
3	P. rhathymum ^T *		+	+				
4	P. sigmoides ^R *		+	+		+		
5	P. triestinum	+		+				
	Family Dinophysiaceae							
6	Dinophysis caudata ^T *		+	+	+			
7	D. parvula		+	+				
8	D. rotundata ^T		+	+				
9	Ornithocercus magnificus				+			
	Family Kareniaceae							
10	Karenia digitata					+		
11	K. mikimotoi ^R					+		
	Family Pyrophacaceae							
12	Pyrophacus horologium *		+					
	Family Ceratiaceae							
13	Ceratium boehmii		+	+	+			
14	C. candelabrum	+		+	+			
15	C. concilians	+	+	+	+			
16	C. furca ^R *	+	+	+		+		
17	C. fusus ^R *	+	+	+	+			
18	C. trichoceros		+	+	+			
19	C. tripos *	+	+	+	+			
	Family Protoperidiniaceae							
20	Protoperidinium conicum			+				
21	P. excentricum *			+				
22	P. latispinum *	+		+	+			
23	P. obtusum *			+				
24	P. pellucidum ^T *	+	+	+				
25	P. punctulatum *	+		+	+			
	Family Calciodinellaceae							
26	Scrippsiella spinifera					+		
27	S. trochoidea *					+		

Table 2 List of dinoflagellate species observed in Kagoshima and Uranouchi Bays, south Japan

+ Occurrence

^T Toxic species

^R Red tide-forming species

* Species appeared in both south Japan and Hainan Island

5. Potential threat for the invasion of species from Hainan Island by natural and artificial factors

Potential threat for the invasion of species from Hainan Island by natural and artificial factors Thirteen dinoflagellate species including six harmful species were found in both Hainan Island and south Japan from the plankton samples (Table 2), and most species were recorded from Japan recently, while 35 phytoplankton species including one harmful species were found in both Hainan Island and Kagoshima Bay from the sediment

No.	GenBank accession	Species name	Dhydyna	Class	Ondon	Sequences number		
			Phylum	Class	Order	Hainan Island	Kagoshima Bay	
1	DQ473679.1	Synechococcus sp.1	Cyanobacteria	Cyanophyceae	Chroococcales	3	40	
2	AY995306.1	Synechococcus sp.4	Cyanobacteria	Cyanophyceae	Chroococcales	2	23	
3	DQ473684.1	Synechococcus sp.5	Cyanobacteria	Cyanophyceae	Chroococcales	2	11	
4	EU851956.1	Micromonas pusilla	Chlorophyta	Mamiellophyceae	Mamiellales	22	21	
5	EU851970.1	Ostreococcus sp.1	Chlorophyta	Mamiellophyceae	Mamiellales	1	165	
6	AY857618.1	Tetraselmis marina	Chlorophyta	Prasinophyceae	Chlorodendrales	48	7	
7	AB561048.1	Pseudoscourfieldia marina	Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	33	266	
8	AY119764.1	Peridinium foliaceum	Dinoflagellate	Dinophyceae	Peridiniales	298	146	
9	AB430737.1	Psammodictyon constrictum	Bacillariophyta	Bacillariophyceae	Bacillariales	2597	25	
10	AB430735.1	Navicula sp.	Bacillariophyta	Bacillariophyceae	Naviculales	4550	108	
11	JN418733.1	Pinnularia subanglica	Bacillariophyta	Bacillariophyceae	Naviculales	3563	1	
12	JN418709.1	Pinnularia viridiformis	Bacillariophyta	Bacillariophyceae	Naviculales	4873	52	
13	JN418719.1	Pinnularia subcommutata	Bacillariophyta	Bacillariophyceae	Naviculales	35	8	
14	JN418734.1	Sellaphora blackfordensis	Bacillariophyta	Bacillariophyceae	Naviculales	465	6	
15	AB430733.1	Campylodiscus thuretii	Bacillariophyta	Bacillariophyceae	Surirellales	23	6	
16	JQ217358.1	Chaetoceros socialis	Bacillariophyta	Coscinodiscophyceae	Chaetocerotales	97	586	
17	AB430706.1	Chaetoceros radicans	Bacillariophyta	Coscinodiscophyceae	Chaetocerotales	1	4	
18	AB430701.1	Melosira dubia	Bacillariophyta	Coscinodiscophyceae	Melosirales	134	15	
19	AB430703.1	Stephanopyxis turris	Bacillariophyta	Coscinodiscophyceae	Melosirales	1297	243	
20	AB430702.1	Rhizosolenia setigera	Bacillariophyta	Coscinodiscophyceae	Rhizosoleniales	48795	3796	
21	AY119761.1	Skeletonema costatum	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	313	1690	
22	AB430705.1	Cyclotella meneghiniana	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	10804	2900	
23	JQ217360.1	Discostella sp.	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	12	1	
24	JQ217365.1	Stephanodiscus hantzschii	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	24	9	
25	HQ710698.1	Thalassiosira conferta	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	307	867	
26	JQ217368.1	Thalassiosira punctigera	Bacillariophyta	Coscinodiscophyceae	Thalassiosirales	3	140	
27	AB430699.1	Aulacoseira granulata	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	28	18	
28	AB430712.1	Asteroplanus karianus	Bacillariophyta	Fragilariophyceae	Fragilariales	13714	13	
29	AB430724.1	Plagiostriata goreensis	Bacillariophyta	Fragilariophyceae	Fragilariales	17236	20	
30	AB430728.1	Pseudostaurosira brevistriata	Bacillariophyta	Fragilariophyceae	Fragilariales	13852	75	
31	HQ710696.1	Asterionella glacialis	Bacillariophyta	Fragilariophyceae	Fragilariales	35	4	
32	AB430723.1	<i>Opephora</i> sp.	Bacillariophyta	Fragilariophyceae	Fragilariales	2	12	
33	AB430708.1	Eunotogramma laevis	Bacillariophyta	Mediophyceae	Anaulales	984	520	
34	AB430707.1	Cymatosira cf. belgica	Bacillariophyta	Mediophyceae	Cymatosirales	170	348	
35	U18090.1	Heterosigma carterae	Heterokonphyta	Raphidophyceae	Chattonellales	1	135	

Table 3 Phytoplankton species appeared in both Hainan Island and Kagoshima Bay (based on the homology of more than 95% of the Blast Hit identity values)

samples (Table 3), being more than 50% of species which occurred in Kagoshima Bay, and red tideforming species *Heterosigma carterae* recorded from Japan since 1994, after the importation of fish fry, indicated the invasion of tropical species, including harmful ones, from Hainan Island to Japan by the global warming through the current systems and/or by artificial transportation of fish fry may be plausible.

6. Conclusions

This study suggest that, Hainan Island potentially faces the danger of HABs, and the invasion of the tropical harmful species to Japan may be plausible.

Fig. 1 Harmful species occurred in Hainan Island. a - h: toxic species, *Prorocentrum hoffmannianum, P. lima, P. rhathymum, Dinophysis acuminata, D. caudata, Lingulodinium polyedrum, Protoperidinium oceanicum, P. pellucidum.* i - l: red tide-forming species, *Prorocentrum micans, P. sigmoides, Ceratium furca, C. fusus.*

Fig. 2 Similarity between south Japan and Hainan Island on family level (a) and harmful species (b) (based on species occurrence, nonquantitatively).

Fig. 4 Similarity between Hainan Island and Kagoshima Bay on order level (a) and Harmful algae (b) (based on species occurrence by metagenomic analysis in sediments, nonquantitatively).

Fig. 3 Diversity richness of phytoplankton and phylogenetic distribution on phylum (inner circle), class (middle circle), and order level (outer circle) (based on over 95% homology) of Hainan Island (a) and Kagoshima Bay (b). '*' represents unclassified groups. No relationship among the same colors.